
MOOCHO Reference Manual
MOOCHO Version 1.0 in Trilinos 7.0

Generated by Doxygen 1.4.2

Tue Sep 26 12:10:22 2006

CONTENTS 1

Contents

1 MOOCHO: Multi-functional Object-Oriented arCHitecture for Opti-
mization 1

1 MOOCHO: Multi-functional Object-Oriented
arCHitecture for Optimization

WARNING! This documentation is currently under active construction!

1.1 Outline

• Introduction

• MOOCHO Overview Document

• Hyper-linked HTML version of this Document

• MOOCHO Quickstart

– Configuring, Building, and Installing MOOCHO

– Installed Optimization Examples

* Examples of General Serial NLPs with Explicit Jacobian Entries

* Examples of Simulation-Constrained NLPs using Thyra

– Running MOOCHO to Solve Optimization Problems

• Representing Nonlinear Programs for MOOCHO to Solve

– Representing General Serial NLPs with Explicit Jacobian Entries

– Representing Simulation-Constrained Parallel NLPs through Thyra

• Other Trilinos Packages on which MOOCHO Directly Depends

• Configuration of the MOOCHO Package

• Individual MOOCHO doxygen collections

• Browse all of MOOCHO as a single doxygen collection

• Links to other documentation collections

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.2 Introduction 2

1.2 Introduction

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) is
designed to solve large-scale, equality and inequality nonlinearly constrained,
non-convex optimization problems (i.e. nonlinear programs) using reduced-space
successive quadratic programming (SQP) methods. The most general form of the
optimization problem that can be solved is:

minimize f(x)
subject to c(x) = 0

xL ≤ x ≤ xU

wherex ∈ <n the vector of optimization variables,f(x) ∈ <n → < is the nonlinear
scalar objective function,c(x) = 0 (wherec(x) ∈ <n → <m) are the nonlinear
constraints, andxL andxU are the upper and lower bounds on the variables. The
current algorithms in MOOCHO are well suited to solving optimization problems
with massive numbers of unknown variables and equations but few so-called degrees
of optimization freedom (i.e. the degrees of freedom = the number of variables minus
the number of equality constraints =n−m). Various line-search based globalization
methods are available, including exact penalty functions and a form of the filter
method. Many of the algorithms in MOOCHO are provably locally and globally
convergent for a wide class of problems in theory but in practice the behavior and the
performance of the algorithms varies greatly from problem to problem.

MOOCHO was initially developed to solve general sparse optimization problems
where there is no clear distinction between state variables and optimization
parameters. For these types of problems a serial sparse direct solver must be used (i.e.
using MA28) to find a square basis that is needed for the variable reduction
decompositions that are current supported.

More recently, MOOCHO has been interfaced throughThyra and the
Thyra::ModelEvaluator interface to address very large-scale, massively
parallel, simulation-constrained optimization problems that take the form:

minimize f(xD, xI)
subject to c(xD, xI) = 0

xD,L ≤ xD ≤ xD,U

xI,L ≤ xI ≤ xI,U

wherexD ∈ <m are the "dependent" state variables,xI ∈ <n−m are the
"independent" optimization parameters andc(xD, xI) = 0 are the discrete nonlinear
state simulation equations. Here the state Jacobian∂c

∂xD
must be square and

nonsingular and the partitioning ofx =
[

xT
D xT

I

]T
into state variablesxD and

optimization variablesxI must be knowna priori and this partitioning can not change
during a solve. Warning, theThyra::ModelEvaluator interface uses a
overlapping and inconsistent set set of names for the variables and the problem

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.3 MOOCHO Overview Document 3

functions. All of the functionality needed for MOOCHO to solve a
simulation-constrained optimization problem can be specified through sub-classing
theThyra::ModelEvaluator interface, and relatedThyra interfaces.
Epetra-based applications can instead implement the
EpetraExt::ModelEvaluator interface and never need to work with Thyra
directly except in trivial and transparent ways.

For simulation-constrained optimization problems, MOOCHO can utilize the full
power of the massively parallel iterative linear solvers and preconditioners available in
Trilinos through Thyra through theStratimikos package by just flipping a few
switches in a parameter list. These include all of the direct solves in Amesos, the
preconditioners in Ifpack and ML, and the iterative Krylov solvers in AztecOO and
Belos (which is not being released but is available in the development version of
Trilinos). For small to moderate numbers of optimization parameters, the only
bottleneck to parallel scalability is the linear solver used to solve linear systems
involving the state Jacobian∂c

∂xD
. The reduced-space SQP algorithms in MOOCHO

itself exhibit extremely good parallel scalability. The parallel scalability of the linear
solvers is controlled by the simulation application and the Trilinos linear solvers and
preconditioners themselves. Typically, the parallel scalability is limited by the
preconditioners as the problem is partitioned to more and more processes.

MOOCHO also includes a minimally invasive mode for reduced-space SQP where the
simulator application only needs to compute the objective and constraint functions
f(xD, xI) ∈ <n → < andc(xD, xI) ∈ <n → <m and solve only forward linear
systems involving ∂c

∂xD
. All other derivatives can be approximated with directional

finite differences but any exact derivatives that can be computed by the application are
happily accepted and fully utilized by MOOCHO through the
Thyra::ModelEvaluator interface.

1.3 MOOCHO Overview Document

A more detailed mathematical overview of nonlinear programming and the algorithms
that MOOCHO implements are described in the documentAn Overview of
MOOCHO.

1.4 Hyper-linked HTML version of this Document

The doxygen-generated hyper-linked version of his document can be found at the
Trilinos website under the link to MOOCHO.

1.5 MOOCHO Quickstart

In order to get started using MOOCHO to solve your NLPs you must first build
MOOCHO as part of Trilinos and install it. When MOOCHO is installed with

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 4

Trilinos, several complete examples are also installed that show how to define NLPs,
compile and link against the installed headers and libraries, and how to run the
MOOCHO solvers.

Below, we briefly describeConfiguring, Building, and Installing MOOCHO, Running
MOOCHO to Solve Optimization Problems, and accessing theInstalled Optimization
Examples.

1.5.1 Configuring, Building, and Installing MOOCHO

Complete details on the configuration, building, and installation of Trilinos are
described in theTrilinos Users Guide . However, here we give a quick
overview of one such installation.

Here we describe the configuration, build, and installation process for a directory
structure that looks like:

$TRILINOS_BASE_DIR
|
|-- Trilinos
|

-- BUILDS
|

-- DEBUG

where$TRILINOS_BASE_DIR is some base directory such as
TRILINOS_BASE_DIR=$HOME/Trilinos.base . However, in general, the
build directory (show as$TRILINOS_BASE_DIR/BUILDS/DEBUG above) can be
any directory you want but should not be the same as the base directory for Trilinos.
In the most general case, we will assume that$TRILINOS_BUILD_DIR is the base
build directory; in this section, we assume that
TRILINOS_BUILD_DIR=$TRILINOS_BASE_DIR/BUILDS/DEBUG . The
Trilinos Users Guide might still recommend that you create the build directory from
within the main Trilinos source directory tree (i.e.Trilinos/DEBUG) but we
recommend against this practice and the build system supports the more general case
described here just as well.

Here are the steps needed to configure, build, and install MOOCHO along with the
rest of Trilinos:

1. Obtain a source tree for Trilinos

Once you have created the base directory$TRILINOS_BASE_DIR you need
to get a copy of the Trilinos source.

If you have CVS access you can obtain the version of the day through the main
development trunk or can check out a specific tagged release. For example, to
obtain the version of the day you would perform:

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 5

cd $TRILINOS_BASE_DIR
cvs -d :ext:userid@software.sandia.gov:/space/CVS co Trilinos

whereuserid is your user ID on the CVS server. For further details on
working with CVS access to Trilinos, see theTrilinos Developers
Guide .

If you do not have CVS access you can obtain a tar ball for a release of Trilinos
from theTrilinos Releases Download Page . Once you have the tar
ball, you can expand it into the directory$TRILINOS_BASE_DIR as follows:

cd $TRILINOS_BASE_DIR
tar -xzvf ~/Trilnos-7.0.x.tar.gz

where7.0.x is some minor release number of Trilinos; hopefully the most
current version.

2. Create the build base directory

After you have a copy of the Trilinos source tree in
$TRILINOS_BASE_DIR/Trilinos , you need to create the base build
directory. Here, we assume that you will create the build directory
$TRILINOS_BASE_DIR/BUILDS/DEBUG as follows:

cd $TRILINOS_BASE_DIR
mkdir BUILDS
mkdir BUILDS/DEBUG

3. Create a configuration script

Once you have the Trilinos source code and have created a base build directory,
you need to create a configuration script for Trilinos. By far the hardest part of
building and installing Trilinos is figuring out how to write the configuration
script that will work for the system that you are on and includes the packages
and extra options that you need. The best place to find example configure
scripts that at least have a chance of being correct on specific systems is to look
at Trilinos test harness scripts in the directory:

Trilinos/commonTools/test/harness/invoke-configure

Older scripts that have worked on a wider variety of systems in the past for
different sets of packages can be found in the directory:

Trilinos/sampleScripts

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

http://software.sandia.gov/trilinos/downloads

1.5 MOOCHO Quickstart 6

Warning! The scripts inTrilinos/sampleScripts are likely to be
currently broken for even the same systems for which they where developed.
These scripts really only provide ideas for different combinations of options to
try to get a configure script to work on your system.

Below is perhaps one of the simplest configure scripts that might get Trilinos to
build on a GCC/Linux based platform with MOOCHO support correctly and
with enough capability to be useful for initial development purposes:

$TRILINOS_BASE_DIR/Trilinos/configure \
--prefix=$TRILINOS_INSTALL_DIR \
--with-gnumake \
--enable-export-makefiles \
--with-cflags="-g -O0 -ansi -Wall" \
--with-cxxflags="-g -O0 -ansi -Wall -pedantic" \
--enable-teuchos-extended --enable-teuchos-debug --enable-teuchos-abc \
--enable-thyra \
--enable-epetraext \
--enable-stratimikos \
--enable-moocho

A word of caution is in order about the above simple configure script; The
above script assumes that certain packages will be turned on by default (such as
Epetra, Amesos, AztecOO, Ifpack, and ML) and other will be turned on
automatically by the presence of other enables. While this should work
correctly for many different possible combinations of enables and disables,
there are many configurations that will not work just due to faults in logic and
inadequate testing of all of the possible options. When in doubt, be explicit
about what you enable and be weary about selectively disabling certain
packages and subpackages.

Below is an example of a more compliicated configure script that might be used
to configure Trilinos with MOOCHO support and a Linux system with gcc with
more capabilities based on some third-party libraries (but the script might not
actually work on any actual computer on Earth):

$TRILINOS_BASE_DIR/Trilinos/configure \
--prefix=$TRILINOS_INSTALL_DIR \
--with-install="/usr/bin/install -p" \
--with-gnumake \
--enable-export-makefiles \
--with-cflags="-g -O0 -ansi -Wall" \
--with-cxxflags="-g -O0 -ansi -Wall -ftrapv -pedantic -Wconversion" \
--enable-mpi --with-mpi-compilers \
--with-incdirs="-I${HOME}/include" \
--with-ldflags="-L${HOME}/lib/LINUX_MPI" \
--with-libs="-ldscpack -lumfpack -lamd -lparmetis-3.1 -lmetis-4.0 -lskit" \
--with-blas=-lblas \
--with-lapack=-lapack \
--with-flibs="-lg2c" \
--disable-default-packages \
--enable-teuchos --enable-teuchos-extended --disable-teuchos-complex \

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 7

--enable-teuchos-abc --enable-teuchos-debug \
--enable-thyra \
--enable-epetra \
--enable-triutils \
--enable-epetraext \
--enable-amesos --enable-amesos-umfpack --enable-amesos-dscpack \
--enable-aztecoo \
--enable-ifpack --enable-ifpack-metis --enable-ifpack-sparskit \
--enable-ml --with-ml_metis --with-ml_parmetis3x \
--enable-stratimikos \
--enable-moocho

The above script is almost completely platform dependent in most cases, except
for everything below-disable-default-packages for enable options
for individual packages. A few points about the above configure script are
worth mentioning. First, some of the package enable options such as
-enable-epetra should be unnecessary once other options such as
-enable-epetraext are included but to be safe it is a good idea to be
explicit about what packages to build in case the default built-in top-level
configure logic does not handle the dependencies correctly. Second, it is a good
idea to include the options-enable-teuchos-debug and
-enable-teuchos-abc when you first start working with Trilinos to help
catch coding errors on your part (and perhaps on the part of Trilinos
developers). Third, the above script shows enabled support for several
third-party libraries such as UMFPACK, DSCPACK, SparseKit, and Metis. You
are responsible for installing these third party libraries yourself if you want the
extra capabilities that they enable. Otherwise, to get started, a simpler script,
such as shown above, can be used to get started with Trilinos/MOOCHO.

As a final step, you can copy the contents of the configure invocation command
(examples shown above) into a script calleddo-configure and make the
script executable which is assumed below.

4. Configure, build, and install Trilinos

Once you have a configure script, you can try to configure and build Trilinos as
follows:

cd $TRILINOS_BUILD_DIR
./do-configure
make
make install

If a problem does occur, it usually occurs during configuration. Often trial and
error is required to get the configuration to complete successfully.

Once the Trilinos build completes (which can take hours on a slower machine if
a lot of packages are enabled) you should test Trilinos using something like:

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 8

make runtest-mpi TRILINOS_MPI_GO="mpirun -np "

If MPI is not enabled, you run run the serial test suite as:

make runtest-serial

Some of the tests in the test suite may fail if you have not enabled everything
and this is okay. Once you feel confident that the build has completed correctly,
you can install Trilinos as follows:

make install

If everything goes smoothly, then Trilinos will be installed with the following
directory structure:

$TRILINOS_INSTALL_DIR
|
|-- examples
|
|-- include
|
|-- libs
|

-- tools

Once the install competes, you can move on to building and running the
installed MOOCHO examples as described in the next section.

1.5.2 Installed Optimization Examples

When the configure option-enable-export-makefiles is included, a set of
examples are installed in the directory specified by
-prefix=$TRILINOS_INSTALL_DIR and the directory structure will look
something like:

$TRILINOS_INSTALL_DIR
|
|-- examples
| |
| -- moocho
| |
| |-- NLPWBCounterExample
| |
| |-- ExampleNLPBanded
| |

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 9

| |-- thyra
| |
| |-- NLPThyraEpetraModelEval4DOpt
| |
| -- NLPThyraEpetraAdvDiffReactOpt
|

-- tools
|

-- moocho

Note that the directory
$TRILINOS_INSTALL_DIR/examples/moocho/thyra will not be installed
if -enable-export-makefiles is not included (or is disabled) or if
-enable-thyra is missing or-disable-moocho-thyra is specified at
configure time.

Each installed example contains a simple makefile that is ready to build each of the
examples and to demonstrate several important features of MOOCHO. Each makefile
shows how to compile and link against the installed header files and libraries. These
makefiles use the Trilinos export makefile system to make it easy to get all of the
compiler and linker options and get the right libraries in the build process. The user is
encouraged to copy these examples to their own directories and modify them to solve
their NLPs.

Specific examples are explained below but we first go through the common features of
these examples here for one of theThyra::ModelEvaluator examples .

One common feature of all of the installed examples is the makefile that is generated.
For theNLPWBCounterExample example (that is described in the section
Examples of General Serial NLPs with Explicit Jacobian Entries) the makefile looks
like:

By using the macros starting withMOOCHO_one is guaranteed that the same compiler
with the same options are used to build the client’s code that were used to build
Trilinos. Of particular importance are the macrosMOOCHO_CXX, MOOCHO_DEFS,
MOOCHO_CPPFLAGS, andMOOCHO_CXXLDsince these ensure that the same C++
compiler and the same-D C/C++ preprocessor definitions are used. These are critical
to compiling compatible code in many cases. The macrosMOOCHO_LIBScontain all
of the libraries needed to link executables and they include all of the libraries in their
lower-level dependent Trilinos packages. For example, you don’t explicitly see the
libraries for say Teuchos, but you can be sure that they are there.

This makefile gets created with the following lines commented in or out depending on
if -enable-gnumake was specified or not when Trilinos was configured:

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.5 MOOCHO Quickstart 10

In the above example, support for GNU Make is enabled which results in scripts being
called to clean up the list of include paths and libraries and may have duplicate entries
otherwise.

A few different installed NLP examples are described in the following sections.

1.5.2.1 Examples of General Serial NLPs with Explicit Jacobian Entries

• Waechter and Biegler Counterexample

– NLPInterfacePack::NLPWBCounterExample: Subclass for a
small NLP with n=3 variables and m=2 equality constraints that
implements the Waechter and Bielger counterexample [???] which shows
global convergence failure from many starting points for many NLP
solvers (including many current MOOCHO algorithms).

– NLPWBCounterExampleMain.cpp : Main driver program for solving
the NLP.

– Installed in$TRILINOS_INSTALL_-
DIR/example/moocho/NLPWBCounterExample

• Scalable Banded Equality and/or Inequality Constrained Example

– NLPInterfacePack::ExampleNLPBanded: Scalable NLP with
nD dependent variables,nI independent variables,mI general inequality
constraints, and with a Jacobian with bandwidth ofbw. This NLP can also
be configured to represent a square simulation-only problem (i.e.nI=0)
and an unconstrained optimization problem (i.e.nD=0).

– ExampleNLPBandedMain.cpp : Main driver program for solving the
NLP.

– Installed in$TRILINOS_INSTALL_-
DIR/example/moocho/ExampleNLPBanded

1.5.2.2 Examples of Simulation-Constrained NLPs using Thyra The below
examples show subclasses ofEpetraExt::ModelEvaluator that are used
along withThyra::EpetraModelEvaluator and the stratimikos solvers
accessed throughThyra::DefaultRealLinearSolverBuilder .

• Simple 4 x 2 serial optimization problem demonstrating the
EpetraExt::ModelEvaluator interface

– EpetraModelEval4DOpt: Subclass for a small serial model with
n=4 variables and m=2 equality constraints. The purpose of this model is
to show the most basic parts of a concrete implementation. This example
is only serial however and does not address parallelization issues.

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.6 Representing Nonlinear Programs for MOOCHO to Solve 11

– NLPThyraEpetraModelEval4DOptMain.cpp : Main driver
program for solving the NLP.

– Installed in$TRILINOS_INSTALL_-
DIR/example/moocho/thyra/NLPThyraEpetraModel-
Eval4DOpt

• Scalable Parallel 2D diffusion/reaction boundary inversion problem

– GLpApp::AdvDiffReactOptModel: Implements an inversion
problem based on a finite-element discretization of a 2D reaction/diffusion
state equation. This example shows a more advanced model what includes
parallelization in the state space.

– NLPThyraEpetraAdvDiffReactOptMain.cpp : Main driver
program for solving the NLP.

– Installed in$TRILINOS_INSTALL_-
DIR/example/moocho/thyra/NLPThyraEpetraAdvDiff-
ReactOpt

Note: The above examples will only be installed if the configure options
-enable-moocho , -enable-thyra , -enable-stratimikos , and
-enable-epetraext-thyra are all included.

1.5.3 Running MOOCHO to Solve Optimization Problems

Once an NLP is defined and a driver program is in place (see the above driver
programs), MOOCHO can then be run to try to solve the optimization problem. When
solving an NLP based on
NLPInterfacePack::NLPSerialPreprocessExplJac one should directly
use the solver classMoochoPack::MoochoSolver . However, when using an
NLP based onThyra::ModelEvaluator , then the solver class
MoochoPack::ThyraModelEvaluatorSolver should be used. The use of
these two classes are demonstrated in the files ??? and ??? respectively.

ToDo: Finish this section!

1.6 Representing Nonlinear Programs for MOOCHO to Solve

As described above, there are two well supported tracts to developing concrete NLP
subclasses to be used with MOOCHO. The first type are general NLPs with explicit
derivative components that can only be solved in serial. The second type are
simulation-constrained NLPs that can be solved on massively parallel computers by
utilizing preconditioned iterative linear solvers.

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.6 Representing Nonlinear Programs for MOOCHO to Solve 12

1.6.1 Representing General Serial NLPs with Explicit Jacobian Entries

Warning! This NLP interface is going to most likely change before the next major
release of Trilinos. Therefore, it is recommended that users derive their NLPs from
the Thyra-based simulation-constrained interfaces described in the next section
Representing Simulation-Constrained Parallel NLPs through Thyra.

One type of NLP that MOOCHO can solve are general NLPs where there are explicit
gradient and Jacobian entries available. This means that the gradient of the objective
function∇f must be available in vector coefficient form and the gradient of the
constraints matrix∇c (i.e. the rectangular Jacobian∂c

∂x = ∇cT) must be available in
sparse matrix form. In this type of problem, a basis matrix for the constraints need not
be knowna priori but this requires the availability of a linear direct solver that can be
used to find a square nonsingular basis from a rectangular matrix. There are a few
direct solvers available that could in principle find a square basis given a rectangular
input matrix but MOOCHO only currently contains wrappers for LAPACK (i.e. dense
factorization usingDEGETRF(...)) and the Harwell Subroutine Library (HSL)
routine MA28. The MA28 routine is the only viable option currently supported for
large sparse linear systems. In the past, other direct solvers have been experimented
with and an ambitious user can provide support for any direct solver they would like
(with the ability to find a square basis) by providing an implementation of the
AbstractLinAlgPack::DirectSparseSolver interface. If your NLP can
also provide explicit objective function gradients, then concrete subclasses should
derive from theNLPInterfacePack::NLPSerialPreprocessExplJac
subclass.

ToDo: Copy and paste in writeup from old draft of the MOOCHO user’s guide.

1.6.2 Representing Simulation-Constrained Parallel NLPs through Thyra

Another type of NLP that can be solved using MOOCHO are simulation-constrained
NLPs where the basis section is known up front. For these types of NLPs, it is
recommended that the NLP be specified through theThyra::ModelEvaluator
interface and this provides access to a significant linear solver capability through
Trilinos. These types of NLPs can be solved in single program multiple data (SPMD)
mode in parallel on a massively parallel computer.

TheThyra::ModelEvaluator interface uses a different notation than the
standard MOOCHO NLP notation. The model evaluator notation is:

minimize g(x, p)
subject to f(x, p) = 0

xL ≤ x ≤ xU

pL ≤ p ≤ pU

wherex ∈ <nx are the state variables,p ∈ <np are the optimization parameters and
f(x, p) = 0 are the discrete nonlinear state simulation equations. Here the state

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.7 Other Trilinos Packages on which MOOCHO Directly Depends 13

Jacobian∂f
∂x must be square and nonsingular. The partitioning of variables into state

variablesx and optimization variablesp must be knowna priori and this partitioning
can not change during a solve.

Comparing the MOOCHO notation for optimization problems using variable
decomposition methods which is

minimize f(xD, xI)
subject to c(xD, xI) = 0

xD,L ≤ xD ≤ xD,U

xI,L ≤ xI ≤ xI,U

we can see the mapping between the MOOCHO notation and the
Thyra::ModelEvaluator notation as summarized in the following table:

It is unfortunate that the notation used with the Model Evaluator interfaces and
software are different than those used by MOOCHO. The reason for this change in
notation is that the Model Evaluator had to first appeal to the forward solve
community wheref(x, p) = 0 is the standard notation for the parameterized state
equation and changing the notation of all of MOOCHO after the fact to match this
would be very tedious to perform. We can only hope that the user can keep the above
mapping of notation straight between MOOCHO and the Model Evaluator.

Currently, and more so in the near future, a great deal of capability will be
automatically available when a user provides an implementation of the
EpetraExt::ModelEvaluator interface (as shown in the sectionExamples of
Simulation-Constrained NLPs using Thyra). For these types of NLPs, a great deal of
linear solver capability is available through the linear solver and preconditioners
wrappers in theStratimikos package. In addition, the application will also have
access to many other nonlinear algorithms provided in Trilinos (see the Trilinos
packages NOX, LOCA, and Rythmos).

1.7 Other Trilinos Packages on which MOOCHO Directly
Depends

MOOCHO has direct dependencies on the following Trilinos packages:

• teuchos : This package supplies basic utility classes such as
Teuchos::RefCountPtr andTeuchos::BLAS that MOOCHO software
is dependent on.

• rtop : This package supplies the basic interfaces for vector
reduction/transformation operators as well as support code and a library of
pre-written RTOp subclasses. Much of the software in MOOCHO depends on
this code.

MOOCHO also optionally directly depends on the following Trilinos packages:

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

file:../../../stratimikos/doc/html/index.html
file:../../../teuchos/doc/html/index.html
file:../../../rtop/doc/html/index.html

1.8 Configuration of the MOOCHO Package 14

• thyra : This package supplies interfaces and support software for SPMD and
other types of computing platforms and defines the interface
Thyra::ModelEvaluator for simulation-constrained optimization that
MOOCHO can use to define NLPs. See the option
-enable-moocho-thyra described in the sectionConfiguration of the
MOOCHO Package.

• epetraext : This package provides an Epetra-specific interface for the model
evaluator calledEpetraExt::ModelEvaluator and contains some
concrete examples that are used by MOOCHO.

• stratimikos : This package supplies Thyra-based wrappers for several serial
direct and massively parallel iterative linear solvers and preconditioners.

1.8 Configuration of the MOOCHO Package

The MOOCHO package’sconfigure script (which should be called from the base
Trilinos-level configure script) responds to a number of options that affect the code
that is built and what code is installed.

Some of the more important configuration options are:

• -enable-moocho : Causes the MOOCHO package and all of its dependent
packages to be enabled and built. Without this option, there will be no
MOOCHO header files or libraries included in the installation of Trilinos (i.e.
usingmake install).

• -enable-moocho-ma28 : Causes the MOOCHO package to compile in
support for the sparse solver HSL MA28. Currently, this is the only supported
direct solver for large sparse systems where the basis matrix is not know up
front.

• -enable-moocho-thyra : Causes the MOOCHO package to compile in
support forThyra::ModelEvaluator to support massively parallel
simulation-constrained optimization. Note that this option will be turned on by
default if -enable-moocho and-enable-thyra are both included.

• -enable-moocho-stratimikos : Causes the examples in the MOOCHO
package to compile in support for the linear solver wrappers through the
Stratimikos package. None of the software in the MOOCHO library has any
dependence on Stratimikos but none of the examples that Thyra depend on it
will be compiled or installed if this option is not included. Note that this option
will be turned on by default if-enable-moocho and
-enable-stratimikos are both included. This option is only meaningful
if Thyra support is enabled.

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

file:../../../thyra/doc/html/index.html
file:../../../epetraext/doc/html/index.html
file:../../../stratimikos/doc/html/index.html

1.8 Configuration of the MOOCHO Package 15

• -enable-export-makefiles : Causes the installation of the MOOCHO
package (an other Trilinos packages) to have the makefile fragments
Makefile.export.moocho and
Makefile.export.moocho.macros installed in the installation
directory$TRILINOS_INSTALL_DIR/include for use by external
makefiles (see the sectionExamples of General Serial NLPs with Explicit
Jacobian Entries). This option also causes the examples described in the section
Examples of Simulation-Constrained NLPs using Thyrato be installed.

See the output fromTrilinos/pacakges/moocho/configure -help for a
complete listing of all of the configure options for which MOOCHO responds.

The MOOCHO package is also affected by configure options passed to other
packages. Here are some of of these options:

• -enable-teuchos-debug : Causes a great deal of error checking code to
be added to MOOCHO software.

• -enable-thyra : Enables all Thyra-based software by default and enables
the MOOCHO/Thyra adapters by default.

• -enable-epetraext-thyra : Causes the examples that depend on
EpetraExt::ModelEvaluator described in the sectionExamples of
Simulation-Constrained NLPs using Thyrato be compiled and installed. Note
that this is enabled by default if-enable-thyra and
-enable-epetraext are both included.

• -enable-stratimikos : Enables support for Stratimikos. Note that this
automatically enables-enable-moocho-stratimikos by default.

• -enable-amesos : Enables support for the Amesos linear solvers that can be
access through Stratimikos.

• -enable-aztecoo : Enables support for the AztecOO linear solvers that can
be access through Stratimikos.

• -enable-belos : Enables support for the Belos linear solvers that can be
access through Stratimikos.

• -enable-ifpack : Enables support for the Ifpack preconditioners that can
be access through Stratimikos.

• -enable-ml : Enables support for the ML preconditioners that can be access
through Stratimikos.

Note that the above options will not be listed by
Trilinos/packages/moocho/configure -help but instead are listed by
Trilinos/configure -help=recursive .

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

1.9 Individual MOOCHO doxygen collections 16

1.9 Individual MOOCHO doxygen collections

Below are links to individual doxygen collections that make up MOOCHO:

• MoochoUtilities : Collection of a small amount of utility code that is
peculiar to MOOCHO. Some of the software that is now inTeuchos such as
Teuchos::RefCountPtr andTeuchos::CommandLineProcessor
where once in this collection.

• IterationPack : Framework for building iterative algorithms that
MOOCHO is based on.

• RTOpPack: Legacy RTOp code that predates Thyra the Trilinos RTOp package
but it still used by MOOCHO. The current version of the TrilinosRTOp
package was developed from refactored code that once lived in this collection.

• DenseLinAlgPack : A C++ class library for dense, BLAS-compatible, serial
linear algebra that is similar to classes like
Teuchos::SerialDenseVector and
Teuchos::SerialDenseMatrix . This class library is used exclusively by
MOOCHO to deal with serial dense linear algebra.

• AbstractLinAlgPack : A C++ class library for abstract linear algebra.
These interfaces predate and helped to inspire Thyra but at this point should be
considered legacy software that should only be used within MOOCHO. It is
likely that a future refactoring of MOOCHO will involve largly removing these
classes and using Thyra directly instead.

• NLPInterfacePack : Set of abstract interfaces based on
AbstractLinAlgPack for representing nonlinear programs (NLPs) (i.e.
optimization problems). These interfaces serve a similar role as the
Thyra::ModelEvaluator interface but there are many differences. In the
future, it is likely that these interfaces will be refactored to look more like the
Thyra::ModelEvaluator interface but are likely to remain distinct.

• ConstrainedOptPack : Collection of utility software for building
constrained optimization algorithms that is based on
AbstractLinAlgPack . Included here are interfaces and adapters for QP
solvers (withQPSchur being included by default), line search interfaces and
implementations, range/null space decompositions and other such capabilities.

• MoochoPack : Provides nonlinear optimization algorithms for primarily rSQP
methods based on theIterationPack framework. This is where the real
algorithmic meat of nonlinear programing is found in MOOCHO. This
collection provides the "Facade"MoochoPack::MoochoSolver .

• MOOCHO/Thyra Adapters : Provides adapter classes for allowing
MOOCHO to solve simulation-constrained optimization problems presented as

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

file:../../src/MoochoUtilities/doc/html/index.html
file:../../src/IterationPack/doc/html/index.html
file:../../src/RTOpPack/doc/html/index.html
file:../../../rtop/doc/index.html
file:../../src/DenseLinAlgPack/doc/html/index.html
file:../../src/AbstractLinAlgPack/doc/html/index.html
file:../../src/NLPInterfacePack/doc/html/index.html
file:../../src/ConstrainedOptPack/doc/html/index.html
file:../../src/MoochoPack/doc/html/index.html
file:../../thyra/doc/html/index.html

1.10 Browse all of MOOCHO as a single doxygen collection 17

Thyra::ModelEvaluator objects. Also included is the higher-level
"Facade" classMoochoPack::ThyraModelEvaluatorSolver .

1.10 Browse all of MOOCHO as a single doxygen collection

You can browse all of MOOCHO as asingle doxygen collection .
Warning, this is not the recommended way to learn about MOOCHO software.
However, this is a good way to browse thedirectory structure of
MOOCHO, to locate files , etc.

1.11 Links to other documentation collections

• Thyra : This package defines basic interfaces and support software for abstract
numerical algorithms.

• Thyra ANA Operator/Vector Adapters for Epetra : This
software includes the basic adapters needed to wrap Epetra objects and Thyra
objects.

• Various Thyra Adapters for EpetraExt : Included here are
adapters and interfaces that allow a perspective nonlinear application to specify
everything needed to define a wide range of nonlinear problems in terms by
subclassing an Epetra-based version of theThyra::ModelEvaluator
interface (calledEpetraExt::ModelEvaluator). This software allows
an appropriately defined Epetra-based model to be used to define a Thyra-based
model to be used to define an optimization problem that MOOCHO can then
solve.

• Stratimikos: Unified Wrappers for Thyra Linear
Solver and Preconditioner Adapters : Stratimikos contains neatly
packaged access to all of the Thyra linear solver and preconditioner wrappers.
Currently, these allow the creation of linear solvers for nearly any
Epetra_RowMatrix object.

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

file:../../browser/doc/html/index.html
file:../../browser/doc/html/dirs.html
file:../../browser/doc/html/dirs.html
file:../../browser/doc/html/files.html
file:../../../thyra/doc/html/index.html
file:../../../epetra/thyra/doc/html/index.html
file:../../../epetraext/thyra/doc/html/index.html
file:../../../stratimikos/doc/html/index.html
file:../../../stratimikos/doc/html/index.html

1.11 Links to other documentation collections 18

MOOCHO Notation Thyra::Model-
Evaluator
Notation

Thyra::Model-
Evaluator
Description

m nx Number of state variables

n−m np Number of optimization
parameters

n nx + np Total number of
optimization variables

xD ∈ <m x ∈ <nx State variables

xI ∈ <n−m p ∈ <np Optimization parameters

c(xD, xI) ∈ <n → <m f(x, p)<nx+np → <nx State equation residual
function

f(xD, xI) ∈ <n → < g(x, p)<nx+np → < Objective function

C ∈ <m×m ∂f
∂x ∈ <

nx×nx Nonsingular state
Jacobian

N ∈ <m×n−m ∂f
∂p ∈ <

nx×np Optimization Jacobian

∇DfT ∈ <1×m ∂g
∂x ∈ <

1×nx Derivative of objective
with respect to state
variables

∇If
T ∈ <1×n−m ∂g

∂p ∈ <
1×np Derivative of objective

with respect to
optimization parameters

Table 1: Mapping of notation between MOOCHO andThyra::ModelEvaluator
for simulation-constrained optimization problems.

Generated on Tue Sep 26 12:10:22 2006 for MOOCHO by Doxygen

	MOOCHO: Multi-functional Object-Oriented arCHitecture for Optimization

